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Universality of fluctuation-dissipation ratios: The ferromagnetic model
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We calculate analytically the fluctuation-dissipation ratio (FDR) for Ising ferromagnets quenched to criti-
cality, both for the long-range model and its short-range analog in the limit of large dimension. Our exact
solution shows that, for both models, X*=1/2 if the system is unmagnetized while X*=4/5 if the initial
magnetization is nonzero. This indicates that two different classes of critical coarsening dynamics need to be
distinguished depending on the initial conditions, each with its own nontrivial FDR. We also analyze the
dependence of the FDR on whether local and global observables are used. These results clarify how a proper
local FDR (and the corresponding effective temperature) should be defined in long-range models in order to
avoid spurious inconsistencies and maintain the expected correspondence between local and global results;
global observables turn out to be far more robust tools for detecting nonequilibrium FDRs.
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I. INTRODUCTION

One of the main goals of modern statistical mechanics is
to find a general theory of nonequilibrium processes. Al-
though significant advances have been made in the past [1,2],
a complete theory of nonequilibrium systems analogous to
thermodynamics does not yet exist. A common approach has
been to extend well-known equilibrium concepts to the non-
equilibrium regime. One of the most important among these
is the temperature, and many researchers have therefore tried
to extend it to systems out of equilibrium by introducing a
so-called effective temperature [3]. The question of whether
and how such a quantity can be defined properly is a central
issue in the construction of a general theory of nonequilib-
rium systems. Different definitions have been employed in
granular systems [4], driven systems [5], and glassy systems
[6] among others. Studies of mean-field spin glasses have
shown that an effective temperature can be defined by mea-
suring the violation of the fluctuation-dissipation theorem
(FDT) in terms of a so-called fluctuation-dissipation ratio
(FDR) [7]

TR(z,1,,)

X(tty) = IC(t,1,)/dty,

where T is the temperature of the heat bath, C(z,t,) is the
autocorrelation function of a given observable, and R(¢,1,,) is
the conjugate response function; the latter encodes the
change of the value of the observable at time ¢ to a small
perturbation at an earlier time f,,. In equilibrium the FDT is
verified and X(z,¢,)=1. Whether the FDR is useful more
generally, and in particular beyond mean-field models, has
been the subject of debate in recent years [8,9]. It has been
shown that the effective temperature defined through the
FDR, T.(t,t,)=T/X(t,t,), has good thermodynamic prop-
erties for some mean-field models [6]; the zeroth law of ther-
modynamics can also be extended to the nonequilibrium re-
gime [10]. Nevertheless, there are still many open questions
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regarding the physical meaning and universality of the FDR
[11,12].

An important aspect in the study of FDT violation in
glassy systems is its application to ferromagnetic systems
which are quenched from high temperature to the critical
temperature (see, e.g., Refs. [13—15] and the recent review
[16]) or below. The ensuing nonequilibrium evolution, where
the system coarsens—by the growth of domains with the
equilibrium magnetization, for 7<<T,—is of course different
from that of glasses in many respects; for example, thermal
activation effects are irrelevant for the long-time dynamics.
However, there are also appealing similarities. In particular,
equilibrium is never reached in an infinite system and as a
consequence the system exhibits aging, i.e., a dependence of
the relaxation properties on the time elapsed since the
quench.

The simplest ferromagnetic model that can be studied at
criticality is the Ising chain first solved by Glauber [17]. At
the critical point, 7=0, the magnetization jumps discontinu-
ously from 0 (7>0) to 1. The relaxation dynamics at zero
temperature after a quench from 7=, i.e., a random initial
configuration, has been studied in, e.g., Refs. [18-20]. Re-
cently, the FDR has been calculated analytically for a ran-
domly staggered perturbation and the corresponding spin au-
tocorrelation function [21,22]. For long times ¢ and t,, this
gives X(¢,t,)=(1+1£,/1)/2. In the limit 7— o the FDR then
approaches X=1/2, which coincides with the value obtained
in models characterized by diffusive dynamics (such as the
random walk or the Gaussian model [23]). These results have
led to the suggestion [13,24] that for systems at criticality the
limiting value of the FDR

X* = lim lim X(z,1,,)
ty—® 1—®
is a universal quantity. Consistent with this, the exact solu-
tion of the ferromagnetic spherical model in d dimensions at
criticality also gives X*=1/2 for d>4, i.e., above the upper
critical dimension [13,24].
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In considering the universality of the limiting FDR, one
issue is whether and how the limiting FDR depends on the
observable whose correlation and response are measured. An
obvious alternative to the local spin autocorrelation is its
long-wavelength analog, i.e., the correlation function of the
fluctuating magnetization. Exact calculations for the Ising
chain [14,25] and the spherical model [26] as well as numeri-
cal simulations [14,27] for the Ising model in d=2 show that
the resulting global X” is always identical to the local ver-
sion. This local-global correspondence, which can also be
obtained by field-theoretic arguments [15,16], is rather reas-
suring; physically, it arises because the long wavelength Fou-
rier components of the spins are slowest to relax and domi-
nate the long-time behavior of both local and global
quantities. For a numerical determination of the limiting
FDR the global quantities are often more suitable [14,27]
because plots of susceptibility (integrated response) versus
correlation are close to straight lines with slope X*. We do
not discuss in this paper the FDR for other observables that
are nonlinear in the spins, e.g., the energy; this question is
studied in [15,16,26].

A further key question is to what extent the limiting FDR
X* depends on the initial conditions for the coarsening dy-
namics. The results quoted above all apply to initial high-
temperature equilibrium, i.e., an unmagnetized system with
no or only short-range spatial correlations. Some initial
progress in considering more general initial states has al-
ready been made. For the Ising chain [28] a nonzero initial
magnetization does not change the value of X”; this is un-
likely to be a general result, however, because the Ising chain
at its 7=0 critical point has the peculiarity that the magneti-
zation remains constant instead of decaying to zero. Other
values of the limiting FDR are nevertheless possible even in
the Ising chain; e.g., when the magnetization is zero initially
but correlations between spins are so strong that only a finite
number of domain walls exist in the system, one finds [29]
X*=0. A more general analysis for unmagnetized but spa-
tially correlated initial conditions in the spherical model
gives qualitatively similar results [28]: if initial correlations
are strong (i.e., decay with distance as slow power laws), the
limiting FDR is X*=0; otherwise it is the same as for an
uncorrelated initial state.

In this paper we investigate in full detail the dependence
of the FDR on the initial condition for a ferromagnet with
long-range interactions as well as short-range interactions in
the limit of large dimension d. Our main result will be that
the nonequilibrium dynamics starting from unmagnetized
and magnetized initial conditions are in different universality
classes that are distinguished by different and nontrivial, i.e.,
nonzero, values of X*. We also analyze the correspondence
between local and global FDRs. In a naive analysis this ap-
pears broken in the long-range case, but we show that it is
recovered when finite-size corrections are included.

The paper is organized as follows. Section II describes in
outline the calculation of the basic evolution equations for
correlation and response in the long-range ferromagnet. In
Sec. III we compute from these the global and local FDRs.
Section IV contains the corresponding analysis for the short-
range ferromagnet, where the length-scale dependence of the
FDR can be made explicit and the local-global correspon-
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dence holds as expected. In Sec. V this correspondence is
shown to hold also for the long-range model once finite-size
corrections are accounted for. Section VI, finally, summa-
rizes our key results and conclusions. Technical details are
relegated to two Appendices.

II. LONG-RANGE FERROMAGNET

In this section we study the ferromagnet with long-range
interactions and in particular the nonequilibrium dynamics of
the relaxation functions (correlations and responses). We
leave technical details to Appendix A and focus here on the
conceptual aspects of the calculation and the results.

The model is defined by the Hamiltonian

J
H=—_OE G'in—Eh?Xta'i (1)
N-17 i
where the o;,=+1, i=1,...,N, denote Ising spin variables

and h{™ is a position-dependent external field. The strength
of the coupling between spins, J, is normalized by a factor
1/(N-1) to ensure an extensive energy; we will take Jy=1
without loss of generality. The dynamics we consider is of
Glauber type: each spin o; flips independently with rate [1
—o; tanh(Bh;)]/2 where B=1/T is the inverse temperature
and #; the local field acting on spin i,

Lso. 2)

h[=h?Xt+
N- 1]#1'

To keep the notation compact we define the function th(z)
=tanh(Bz) and abbreviate t;=tanh(Bh;)=th(h;). Multiplying
the flip rate by the change —20; when o; flips, it follows that

J
3t<0'i>=<ti_ o (3)

where the angular brackets denote an average over the ther-
mal history of the system and over the initial conditions. For
spin products (i # j) one finds similarly

Jd
5<O-i0-j>=<(ti_o-i)o-j>+<0i(tj_0-j)>- (4)

Throughout this paper, omitted time arguments indicate dy-
namical averages evaluated at time ¢. To obtain the two-time
correlation functions we can take advantage of the fact that
Eq. (3) does not depend on the initial condition and so is
equally valid for correlations with some quantity at an earlier
time ¢, <t. This gives

%(Ui(t)o-j(tw» =([1:(t) - 0i(1) 1o (1)) (5)

Using Eq. (3) we can also express the time evolution of the
magnetization, m=N"'={a;), as

om

5=—m+}v2i (1. 6)

The relaxation dynamics of physical systems is routinely
characterized by correlation and response functions. We will
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consider here the properties of both global and local relax-
ation functions. Our main goal is to clarify the relationship
between them and the implications for the corresponding
FDRs. Note that while the fluctuations of individual spins, as
encoded in the local (auto) correlation function, are O(1),
those of the fluctuating magnetization N'2,0; are O(N~"?).
Nevertheless we will see that the same physics can be ex-
tracted from both quantities. The global correlation function
is scaled by a factor of N below to give an O(1) quantity as
in the local case.

Previous studies [30,31] have shown that the relevant cor-
relation functions are the connected ones, defined by

Cij(t.1y) =(o () o(ty,)) = (o)1)

First we analyze the equal-time correlations. For i # j it fol-
lows from Eq. (4) that

gCU(l, 1 =((t;= ooy +(oi(t; = 7))

= (ti= X)) —(o:)(t;— o))
==2C;i(t,0) +(AtAoy) +(Ad;At)), (7)

where we use the notation A= iy— (i) for the deviation of
any quantity from its average, so that, e.g., Ar;=r,—(¢t;) and
similarly for Ag;. For the two-time correlations one gets
similarly from Eq. (5)

%Cij(t’tw) =([t:(1) = o()]oi(t,)) = [1(1) = T () [ (2,,)

=—Cy(t.1,) +(Ati( Ao (1)) (®)

Equations (7) and (8) are general and also valid for short-
range systems provided that the appropriate local field re-
places the long-range expression (2).

To make progress, we exploit the fact that in the long-
range model, for large N, the correlations between different
spins are of O(N7!). So the fluctuations Ah; of h; around its
mean A{+m are small, of O(N~"2). In equilibrium away
from criticality one can indeed show that ((A4,)>)=O(N7")
while ((Ah;)*Ac;) and ((AR;)*) are O(N~?). We will assume
that the correlations out of equilibrium are of the same order.
This is reasonable if we start from an initial state with weak
correlations and, for quenches to criticality, also restrict our-
selves to the interesting nonequilibrium regime where all
times are short compared to the equilibration time.

Setting the external field to zero, we can Taylor expand

the nonlinear terms in our equations of motion in powers of
Ah;:
i

t;=th(m) + Ahth' (m) + %(Ahi)zth”(m) +. (9

Since we are only interested in the leading terms, we truncate
this expansion after the linear term in Ah;; subleading cor-
rections are discussed in Sec. V. Since (Ah;)=0, the leading
order term in the equation of motion for the magnetization
(6) takes the expected mean-field form
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om
E:—m+th(m). (10)

Due to spatial translation invariance (or more precisely per-
mutation invariance) between spins in the long-range ferro-
magnet, there are only two different correlation functions,
one local and one nonlocal. We write these as

Cii=Cloc+0(N_l)’ (11)

C;j=Cuy/N+O(N?), (12)

using the fact that the nonlocal correlations are only O(1/N)
to leading order.

In terms of the local (11) and nonlocal (12) correlations,
the global correlation is defined by

Cg = Cloc + Cnl (13)

and gives the leading contribution of the correlator of the
magnetization; see Eq. (A1) of Appendix A. In order to com-
pute the dynamical equation for the global correlation func-
tion (13) we need the equations for the local and nonlocal
correlation functions, which can be expressed as

%Cnl(t, 1) =—=2aC,(t,t) + 2th’ (m)(1 — m?), (14)

d
EC“I(I’ ty) == Cot,ty,) + th'(m)Cy(1,1,,), (15)
Croe(t,t) =1 =m?(1), (16)
J
Ecloc(t’tw) == Cloc(t’tw) s (17)

as shown in Appendix A [see Egs. (A2) and (A5)—(A7)]. The
quantity a appearing in Eq. (14) is defined as
a=1-th'(m)=1-p[1-tanh*(Bm)]. (18)

We will not normally write its time dependence explicitly.
In order to complete the analysis of the dynamics of our

model, we need to find the linear response to applied external

fields. This is characterized by the response functions

Ko0)

R, (t,t,) = .
i) Sh (1)

As for the correlation functions, we have to leading order in
N
Rii=Rloc+0(N_l)a (19)

R;j=R,/N+O(N?), (20)

while the leading term in the global response, of the magne-
tization to a uniform field, is

Ry=Ripe + Ry. (21)

The evolution equations for these response functions can be
expressed as
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J
ERnl(L tw) = th,(m)[Rloc(tatw) + Rnl(tv tw)] - Rnl([vtw) >

(22)

J
ER]OC(L tw) == Rloc(t’tw) s (23)

as derived in Appendix A [see Egs. (A10) and (A11)]. These
equations can be integrated forward in time starting from the
values of the equal-time response functions (A13):

Rioo(t,t) =th'(m), Ry (t,1)=0. (24)

The evolution equations (14)—(17) for the correlations and
(22)-(24) for the responses contain all the relevant informa-
tion about the dynamical properties of the ferromagnetic sys-
tems.

III. FLUCTUATION-DISSIPATION RATIOS

Using the results obtained in the previous section, we can
study in full detail the fluctuation-dissipation ratios for glo-
bal and local relaxation functions. Crucially, we will be able
to investigate how the value of the asymptotic global FDR
depends on the initial condition. Our calculation in the
infinite-system-size limit will produce different values for
global and local FDRs; this apparent breaking of the ex-
pected local-global correspondence will be solved and care-
fully explained in Sec. V.

A. Global FDR

To compute the global FDR, we first need the equal-time
global  correlation  Cy(t,1)=Coc(t, 1)+ Cyy(t,1)=1-m*(1)
+C,(t,1). Differentiating this expression with respect to time
and using Egs. (10) and (14) we get

2 Cy(t0) == 2mlth(m) = m] = 2aCy (1) + 2(1 = a)(1 = )

=-2aC,(t,t) +b (25)
with b=2[1-mth(m)] and a defined in Eq. (18). Equation
(25) can be integrated explicitly to get

(1)

1”2(2")

Cy(t,1) = r*(1)C4(0,0) + f dr’ b(t') (26)
0

where we have defined the quantity
t
r(t) = exp(— f dt’a(t’)). (27)
0

For the global two-time correlation (13), the sum of Egs.
(15) and (17) gives (d/dt)C,(t,t,)=-aCy(t,t,) and after in-
tegration

r(t)
r(ty)

To compute the corresponding global response (21), we add
Egs. (22) and (23) to obtain

Cy(t,1,) = Cylty,ty). (28)

PHYSICAL REVIEW E 72, 056114 (2005)

3
ERg(t,rw) =—aR,(1,t,).

The solution for the global response is then given by

r(t)
r(ty)
where we have used R,(t,1)=Ro(t,t) and Eq. (24).

By combining the last two results we get an exact analyti-
cal expression for the global FDR

Ry(t,1,) = ——B{1 — tanh’[ Bm(z,) ]} (29)

TR,(t.t,) 11 - al(1y)]
IC, (L.t )ty b(t,) = alt,) Cylty.ty,)

X,(t.t,) = (30)
where we have also used the fact that dr(z,)/dt,
=—a(t,)r(t,). Equation (30) shows explicitly that the global
FDR depends only on the earlier time t,,, which is a feature
often seen in simple mean-field models. From the general
expression (30) we can now analyze the asymptotic FDR for
different initial conditions.

1. Zero initial magnetization

We consider first the standard case where the system is
initially unmagnetized. This implies a=1-8, b=2, and r(z)
=exp(—at). From Eq. (26) the equal-time correlation is given
by

Cylt,1) = €74C4(0,0) + (1 = e2*)(b/2a). (31)

For high temperatures 7> T,=1, where a >0, this converges
exponentially to its equilibrium value b/2a=1/a; the FDR
approaches the limiting value X;=7(1-a)/(2-a/a)=1 and
the system equilibrates as expected. Below the critical tem-
perature, on the other hand, a is negative and C,(z,1) di-
verges exponentially so that X;c =0. At criticality, finally,
where 7=1 and a=0, the equal-time correlator grows lin-
early as C,(t,1)=C,4(0,0)+2¢ and the FDR has a nontrivial
finite limit X, =1/2. These results can be summarized as
follows:

0, T<T,,
X;=y12, T=T, (32)
1, T>T,.

These FDR values for the long-range Ising ferromagnet with
zero initial magnetization are identical to those obtained for
finite-dimensional spherical ferromagnets above their upper
critical dimension [13,26], as one might have expected on
physical grounds.

2. Nonzero initial magnetization

For nonzero initial values of the magnetization, which
without loss of generality we take as positive, one again
needs to distinguish temperatures above, below and at the
critical temperature. In the first two cases, Eq. (10) tells us
that m(7) decays exponentially to its equilibrium value n1,.
This value is me=0 for T>T,, while for T<T, it is the
(positive) solution of mq=th(m.y)=tanh(Bm.,). Along with
m, the quantities a and b also converge quickly to a.,=1
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-B(1 —mzq) and be,=2(1 —mgq). As ag, is just the relaxation
rate of m(f) to mg, it is positive both above and below the
critical temperature. From Eq. (31) the equal-time correlator
then tends to b.y/(2a.,) and so the FDR approaches the value
[32]

1- mg
=— =1, (33)

& beq—beyl2
This is as expected since the system reaches equilibrium ex-
ponentially quickly.

The interesting case is a quench to criticality (7.=1) with
nonzero initial magnetization m(0). Here Eq. (10) for the
magnetization yields the asymptotic power-law decay

m(r) = \3/2t (34)

independently of initial conditions. Also a(f)=tanh*[m(t)]
which at long times becomes a(t)=3/(2t); as a consequence,
the function r(r) from Eq. (27) scales asymptotically as
exp[—(3/2)In f]=+">2. For the equal-time correlation (26),
both the term including the initial condition C4(0,0) and the
correction arising from the approach of b(r)=2{1
—m(t)tanh[m(t)]}=2-3/t+- - to its limit value are then sub-
leading and one has at long times Cg(t,t)=2ff)dt’(t/t’)‘3
=t/2. The product a(t)Cy(z,1) thus approaches [3/(21)]
X (t/2)=3/4 and the global FDR (30) tends to

1 4
X = =-.
€T 2_3/4 5

This result can also be obtained directly from the long-time
forms of the correlation (28) and response (29),

=372 -3/2
tof t t
C,(t,ty) = 3(7) , Ry(tt,)= (7) .

w

Again, we can summarize the results:

1, T<T,
X;={4/5, T=T., (35)
I, T>T..

The difference between these FDR values and those for the
unmagnetized case, Eq. (32), is a clear signature of the dif-
ference in the underlying coarsening dynamics. For 7<<T. it
is physically obvious that the processes involved are very
different: in the magnetized case the system equilibrates ex-
ponentially quickly, whereas for m=0 it ages indefinitely and
equilibrium is never established.

The result that also the FDR at criticality depends on
whether the system is initially magnetized or not, on the
other hand, is highly nontrivial. Indeed, one might have ex-
pected that the difference between the two cases becomes
negligible at long times because the magnetization decays
toward zero even in the initially magnetized scenario. Our
explicit results show that this relaxation of m(z) does contrib-
ute significantly to the FDR, which acquires a nontrivial non-
zero limiting value. The latter is distinct from the standard
results X*=1/2, indicating that coarsening in the presence of
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a nonzero magnetization belongs to a different dynamical
universality class from coarsening at m=0.

B. Local FDR

Let us now check if the results obtained for global quan-
tities can be reproduced from the local FDR. This is impor-
tant because the concept of a nonequilibrium temperature is
based on its independence on the choice of observable, and
also because numerical work has often focused on the simu-
lation of local correlation and response functions [13,33,34].

The equal-time values of the local correlation and re-
sponse are given in Egs. (16) and (24). From Egs. (17) and
(23) the corresponding two-time quantities decay exponen-
tially, so that

CIOC(IJW) = [1 - mz(tw)]e_T’ (36)

Rioe(t.1,) = B{1 = tank’[ Bm(1,) J}e™ (37)

where 7=r—t,,. The FDR corresponding to the local correla-
tion and response follows as

1 — tanh’[ Bm(t,,)]
1 —m%(ty,) — 2m(t,)om(t,,)/ ot

Xl()c(ts tw) = (38)
and again only depends on the earlier time #,,. If the system
starts in an unmagnetized state then m=0 at all times and
therefore X;..=1 for all temperatures. For nonzero initial val-
ues of the magnetization and T>T,, m(t) decays exponen-
tially to zero and so Xj,.(t, — %) — 1. For T<T,, m(z) also
decays exponentially, but to a nonzero equilibrium value m..
Nevertheless, because mq=tanh(Bm,,), Eq. (38) implies that
again Xjo.(ty,— %) — 1. At criticality, finally, inserting m3()
=3/(2¢) into Eq. (38) shows that also here X, (t,,—®)— 1,
though the convergence is now as a power law (~1/t\2v)
rather than exponentially. Therefore

X,.=1 forallT. (39)

In summary, the limiting FDR obtained from the local
correlation and response does not pick up any signature of
the phase transition at 7.=1, whether the system is magne-
tized or not. We will see in Sec. V that this is a somewhat
pathological consequence of taking N — o before looking at
long times, and that finite-N corrections restore the expected
correspondence between local and global measurements.

IV. FINITE-DIMENSIONAL MODELS
FOR LARGE d

One would expect that the behavior observed above for
the long-range model should also appear in short-range mod-
els above their critical dimension. We therefore now extend
our discussion to the Ising model on a d-dimensional hyper-
cubic lattice with nearest neighbor (NN) interactions, in the
limit of large d. A complication in this case is that there are
multiple scalings of the spin correlation functions. For ex-
ample, local correlations are O(1), those between n.n. spins
scale as O(1/d), and those between next nearest neighbours
(NNN) as O(1/d?). In order to capture the O(1) contribution
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of these correlation functions (and the corresponding re-
sponses) it is useful to consider the Fourier transforms

Cq(t, t,)= E eiq~(r1—rj)clj(t, ty)
!

Ry(t,t,) =2 TR (1,1,,).
1

For example, the 2d NN spins with their correlations
C; (t,t,) of O(1/d) given an overall contribution to Cy(z,1,)
of O(1); the same is true for the O(d*) NNN spins with their
O(1/d?) correlations and so on.

The Hamiltonian of the short-range model is, by analogy
with Eq. (1),

=——E 0,0 - Ehe“

2d (i.j)

In the interaction term the sum now runs over all NN pairs of
spins; the interaction strength has been chosen to get the
same critical temperature, 7,=1, in the limit d — o as in the
long-range model. The local fields are now given by #h;
=h{"'+(2d)"'S,0y instead of Eq. (2), with the sum running
over all NNs of i. For large d the field fluctuations Ah; are
small, of O(d""?), and so one can again linearize in A#h;.

As for the long-range model, we proceed to study the
correlation and response functions in this model. The general
equations (7) and (8) can be used to derive the dynamical
equations for the correlations. To arrive at explicit expres-
sions, we need to analyze the correlations between spins and
local fields. They can be expressed as

(AhAay) = —E (Ao Ao = dE Cyj
k

with Fourier transform

> eiq'(rl_rf)<Ah,A0'j> = (1 = wy)Cy.
I
Here

d
wg=1-- Ecosqa
al

and the g, are the spatial components of the wave vector (.
Using the large-d expansion of the free energy [35] one can
show that equilibrium correlations involving higher powers
of the field fluctuation, e.g., ((Ahi)qu,«), have Fourier trans-
forms which are suppressed by O(1/d) (away from critical-
ity). Following the same reasoning as for the long-range fer-
romagnet, we discard these subleading contributions. For the
magnetization, this leads back to the expected mean-field
equation of motion (10). The evolution of the equal-time
correlations follows by linearization and Fourier transforma-
tion of (7) as
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%Cq(t,t) ==2C4(t,1) + 2th’ (m)(1 — wy) Cy(t,1) + b(2)

(40)

where the last term accounts for the fact that the local corre-
lations C;/(¢,1)=1-m?>(¢) have a different equation of motion
from the nonlocal ones. One can write an explicit expression
for b(z) but this is not helpful because it depends itself on the
Cq(t,1) which we are trying to find. Instead we first solve Eq.
(40) for arbitrary b(z) and then determine the latter such that
the local correlations come out correctly. Generalizing the
definitions of a, Eq. (18), and r, Eq. (27), to

aq= 1 —th'(m)(1 - wq)’

rq(t) = exp(— f dt’aq(t’)> ,
0

the solution of Eq. (40) reads
t 2( )
Cy(t,1) = ré(t)Cq(0,0) + fo dt’—zq(—)b(t’). (41)
The function b(¢') can now be determined from the con-
straint that [(dg)Cqy(t,1)=C,(t,t), where the shorthand nota-
tion [(dq) indicates the integral over q € [—,]¢ normal-
ized by (27)?. Integrating Eq. (41) we find that

1—-m?(r) = f (dq)rg(1)C4(0,0) + f dt’ f (dg)— 2( )b(t)

(42)

For simplicity, we focus in the following on initially uncor-
related spins, i.e., C4(0,0)=1-m?*(0). Using that

& d d 2 d
f (dq)ex(l—wq) = (f 2iﬂ]-e(x/d)cos ‘11) (1 + ﬁ L )
1
=1+ O(—)
d

Eq. (42) then simplifies for large d to
t

1 —m*(1)=e2[1 - m?(0)] + f dt' e 2=p(t).
0

For m(1)=0 at all times this gives the constant value b(z)
=2. For more general scenarios, b still converges to this
value at long times as long as the magnetization decays to
zero, i.e., for T=T..

For the two-time correlations, linearization of (8) in A#;
yields the evolution equation (d/dt)Cy(t,t,)=—aCy(t,t)
and thus

40101,

rq(ty)

The instantanteous response remains purely local as in Eq.
(A12), with Ry(,7)=th’(m) to leading order in 1/d. The evo-

lution of the two-time response is obtained as in the long-
range case, by linearizing Eq. (A8) in the applied field. This

Cyltty) =
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gives simply (9/dt)Ry(t,t,)=—aqRq(t,t,), which integrates
to

rgt)

Ry(t,1,) = th'[m(z,)].

rq(ty)
On the basis of the correlation and response functions one
can define a Fourier-component FDR. By analogy with Eq.
(30) this can be simplified to

TRy(t,1,) th'[m(z,,)]
(IC /ot )(t1,)  b(t,) — aq(ty)Cyltysty,)
(43)
The FDR for the global magnetization, which is the Fourier
component of the spins with q=0, is obtained from this ex-
pression as a special case. Let us now concentrate on

quenches to 7, where we found for the long-range model a
nontrivial dependence of the results on the initial conditions.

Xq(t.ty) =

A. Zero initial magnetization

For zero initial magnetization, m(7)=0 at all times and so
ag(1)=wq and ry(1)=exp(-wyt). Correspondingly, the equal-
time correlations (41) simplify to

Cy(tysty,) = exp(=2wg4ty,) + wL(l —e %) (44)
q
The relevant scaling variable is clearly w= wt,,, so we will
focus on the limit of long times and low “frequencies” w,
taken such that that w remains constant. Since wq=q2/(2d)
for small wg, the scaling wq~ t‘;1 reflects the growing length
scale 1/(]~th/2 of the correlations as the system coarsens.
The first term in Eq. (44), which arises from the decay of
initial correlations, then becomes negligible compared to the
second and we get
1

Xq(t:1) = 5~ wg[1 —exp(=2wyty) J/wy )

1

=, 46
1 +exp(=2wgty,) (46)

For length scales short compared to the time-dependent cor-
relation length, where wgf,, > 1, X, becomes equal to unity as
expected because of effective equilibration on such short
scales. For much larger length scales (w4, <1), and in par-
ticular in the limit wq— 0 which gives the FDR for the mag-
netization, X, approaches 1/2. These two limits can be seen
in Fig. 1 and are consistent with the results for the long-
range ferromagnet, but here we see that in addition one can
interpolate smoothly between the two limits by varying the
length scale considered. Similar behavior is also found in the
Ising chain [14], i.e., for d=1, and in the spherical model
[26]. Given that our calculation is based on a linearization in
the local field fluctuations, it is not surprising that the result
(46) can also be obtained from a Gaussian field theory [36].

B. Nonzero initial magnetization

For nonzero initial magnetization and at criticality, the
magnetization again decays according to Eq. (34). One then
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FIG. 1. Dependence of the FDR on the length scale in the large-
d short-range ferromagnet, for initial conditions with zero [solid
line, Eq. (46)] and nonzero [dashed line, Eq. (47)] magnetization.
Shown on the x axis is the scaling variable wth~q2tw, which is
proportional to the squared ratio of the time-dependent correlation
length (~t\]N/2) to the length scale being probed by the chosen ob-
servable (1/¢q).

has th'[m(z,)]=1-3/(2t,) to leading order for large times,
and consequently a,(t,)=1-[1-3/(2t,)](1-w,). This gives

t
Vq(l) — exp(— J dt’aq(t')> — e—t+[t—(3/2)1n t](l—wq)

0
— t—(3/2)(1—wq)e—wqt

and for long times, the equal-time correlations (41) follow as

Cyltyoty) = (71102l

ty ' 3(l—wq) ,
+f dr'| — e 22t p (1),

0 tw
For 1, — o at fixed w=uwgt,, the first term and the approach

of b(¢') to its limit b=2 give only subleading corrections and
one gets asymptotically

1
Cq(tw7tw) = (x)_fC(wth)’
q

1
Felw) = 2wf dy yle 217y,
0

The Fourier-component FDR (43) therefore becomes
X, (t.1) =2 = {1 = [1 = 3/2,)](1 - wg)} oy Fewyty,)
=2-[3/2w) + 1] F(w) (47)

where we have neglected all terms that are subleading
(~1/t,) for long times. For short length scales, w> 1, one
sees easily that Fe—1 and so Xq— 1, demonstrating the
expected equilibration. On the other hand, for length scales
much larger than the time-dependent correlation length, i.e.,
w<1, one has Fr=w/2 and so X,— (2—-3/4)"'=4/5. This
applies in particular to the FDR for the magnetization (q
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=0) and so is consistent with the result found above for the
long-range model. Again there is a smooth length-scale de-
pendence of the FDR that interpolates between local equilib-
rium and the nontrivial FDR, X*=4/5, for large length
scales; see the dashed line in Fig. 1. This is rather reassuring:
it tells us that there is nothing special about the magnetiza-
tion, i.e., q=0, even though in a magnetized system this is
the only Fourier component that has a nonzero average. In
physical terms, the FDR for the magnetization can also be
observed by looking at length scales that are much smaller
than the system size, as long as they are large compared to
the time-dependent correlation length.

We have only discussed the FDR for pure Fourier com-
ponents here. However, if one considers more general corre-
lations, say of spins across some finite range, one simply gets
a mixture of the Fourier-component FDRs. The resulting
X(t,t,,) will be a mixture of all X,(z,t,) and interpolate be-
tween X(t,,,1,,)=1 at equal times and a nontrivial asymptotic
value X in the limit t>t,, of well-separated times. Follow-
ing the reasoning in the one-dimensional case [14], one can
show that this asymptotic FDR is always identical to the
FDR for the longest wavelength, i.e., Xq=0 because the limit
t>1,, suppresses the contributions from all nonzero wave
vectors. In particular, this means that all observables that are
linear in the spins, including local correlation and response,
will give X*=1/2 for critical coarsening at zero magnetiza-
tion, and X“=4/5 for the magnetized case. (Similarly to the
long-range case discussed in the next section one can show
that these asymptotic FDR values would only be observed
for rather long time differences ¢—t,,, of order 24 or larger,
while for shorter time differences apparent equilibrium be-
havior is obtained.)

V. FINITE-SIZE CORRECTIONS FOR THE LONG-RANGE
FERROMAGNET

In the short-range model just discussed, local and global
observables give the same limiting FDR X”. But in the long-
range model of Sec. III, this correspondence appears to be
broken because the local correlation and response functions
do not pick up any nonequilibrium effects. To analyze the
origin of this discrepancy, we now study the 1/N corrections
to Cioc [Eq. (11)] and Ry, [Eq. (19)]. The calculations are
sketched in Appendix B and we only give the main results
here.

Let us first consider again the unmagnetized case at high
temperatures, 7> T,. Keeping terms up to O(N~!), we find
for the local correlation

. 1B
N(1-p)

where 7=t—t,, as before. The second term becomes domi-
nant over the first for time differences 7=TIn N, i.e., on a
time scale that grows only logarithmically with the system
size. (The 1/N corrections in the large brackets can always
be neglected; they would become relevant only for 7~ N, but
by then the second term is exponentially larger than the first.)
For a finite-size system the correction term therefore domi-

-1
(1-p) +BT> (48)

6;loc(tv[w) = e_T(l - N
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nates the long-time dynamics, causing the decay rate of the
correlation to slow from 1 to 1-8 at 7= T In N. The corre-
sponding local response is related by the FDT to the corre-
lation; this is as expected because for the long times consid-
ered here the system is in equilibrium. A similar argument
indicates that the above long-time results for 7> T, remain
unchanged if the initial magnetization is nonzero.

Next we analyze the nonequilibrium dynamics at critical-
ity (T=T,=1) starting from zero magnetization; here we
would hope to retrieve from the O(1/N) correction terms a
long-time FDR of X[..=1/2. One finds

loc

6floc(t’tw) =e T+ I%I[Cg(thw)(l - e_f) - Te_T]~ (49)

Using the fact that C,(t,,,1,)=2t,+C,(0,0) at criticality, the
1/N expansion now breaks down for 7, ~ N, where the cor-
rection term becomes O(1) rather than O(N~!) as the expan-
sion assumes. For smaller values of ¢, the expansion remains
valid, however, and the 7, derivative of the correlation be-
comes

iéloc(t,tw) ce Ty %(1 Ce ) - ]%e_T(Cg(IW,tW) F147),
The third term can be neglected in the reliable regime f,,
<N, but the second one again becomes dominant over the
leading contribution for 7=In N; for 7—In N> 1, one then
has (9/dty)Cioe(t,1,)=2/N. The corresponding local re-
sponse reads

~ 1 1
Rio(t,t,,) = e‘T<1 - N[Cg(thW) +1+ T]) + N

The second term becomes dominant over the first for 7
~1In N, while the 1/N corrections in the first term can always
be neglected for 7, <N. For 7—In N> 1 the corrected FDR is

therefore )?loc(t, ty)=(1/N)/(2/N)=1/2. To summarize, for
systems that are old (z,>1) but not yet equilibrated (7,
<N), the FDR as a function of the time difference 7 crosses

over from the equilibrium value )?k,c:l to the nonequilib-

rium value X;,.=1/2 on a time scale 7=1In N. In any finite-
size system the limiting value of the local FDR therefore
agrees with the global one, just as the local-global corre-
spondence leads one to expect. If the limit N— o is taken
before the long-time limit, as we did in Sec. II, then one
implicitly discards the nonequilibrium regime. This is what
leads to the apparent breaking of the correspondence with the
global results.

We now compare with the corresponding results for the
nonequilibrium dynamics at criticality starting from nonzero
initial magnetization. Evaluating the 1/N correction terms in
the regime 7> 1 where they are potentially relevant, we find

B (o \n
Cioeltoty) =€ T+ ﬁ(r) , (50)
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5 r\32
Rioo(t,t )=e_7+—(—> . (51)
loc w N ty
As in the unmagnetized case, the correction terms become
significant for 7=In N. For larger time differences the local
quantities become proportional to the global ones; as a con-

sequence, the corrected local FDR )?loc crosses over from 1

to the global FDR )ZTZC:X: =4/5. Our main conclusion of
this section is, therefore, that in any finite-size system the
local-global correspondence is preserved.

We note as an aside that the relevant scaling variable for

the above crossovers in floc is N exp(—7). Plots of floc Versus
N exp(—7) would look similar to those in Fig. 1 for both the
magnetized and unmagnetized cases, though one has to bear
in mind that somewhat different quantities are being plotted:
Fig. 1 refers to the length-scale dependence of the limiting
FDR, whereas here we have a fixed short length scale (local
correlation and response) and are looking at the system-size-
dependent crossover in time of the FDR to its limiting value.

We have not considered the 1/N corrections at 7<<T7, in
this section because it turns out—consistent with the fast
equilibration when starting from nonzero magnetization—
that here the 1/N expansion breaks down already for system
ages t,, of order In N.

VI. SUMMARY AND DISCUSSION

In this paper we have solved analytically the nonequilib-
rium dynamics of the long-range Ising ferromagnet with
Glauber dynamics, initially in the thermodynamic limit and
then including also the leading finite-size corrections; our
focus was on the correlation and response functions and the
associated fluctuation-dissipation ratio. We have also ana-
lyzed the corresponding short-range model in the limit of
large dimension, which provides useful additional insights
into the length-scale dependence of the FDR.

Our main result is that different nontrivial values of the
limiting FDR X* can result depending on the initial condi-
tions. In particular, for quenches to the critical temperature
we find that X*=1/2 in the standard scenario where the sys-
tem is initially unmagnetized, while X*=4/5 if the initial
magnetization is nonzero. We are not aware of any previous
observations of a nontrivial (nonzero) value of X” arising
from initial conditions other than those traditionally consid-
ered; earlier studies [28,29] of strongly correlated initial con-
ditions had always found either the standard value or X*=0.

Our findings show that critical coarsening processes are
fundamentally different depending on whether the system is
magnetized or not, and the two cases must be considered as
belonging to different dynamical universality classes. One
would have certainly expected such a distinction below T,
where in the magnetized case the system equilibrates rapidly.
Our finding that the difference persists even at T, is much
less obvious, seeing as even in the initially magnetized case
the magnetization does decay toward zero at long times. The
limiting FDR thus turns out to be a useful probe for distin-
guishing different classes of nonequilibrium dynamics. Of
course, the differences in the FDR also imply that the asso-
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ciated effective temperatures 7/X” differ between the mag-
netized and unmagnetized cases; this emphasises that the
same system can have different nonequilibrium effective
temperatures depending on its initial preparation, which then
reflect the physical differences in the ensuing nonequilibrium
dynamics.

One may ask whether our results are peculiar to the rela-
tively simple scenarios that we have considered. This is not
so: calculations in the spherical ferromagnet quenched to
criticality [26] give exactly the same limiting FDR X”=4/5
for the magnetized case, in all dimensions d>4. To under-
stand where this particular value comes from, one can write
down a phenomenological Langevin equation for the evolu-
tion of the fluctuating magnetization,

dm b (52)
dm __ ,
dt

where / is an external magnetic field and & is white noise
with variance O(1/N). In the case m=0, because fluctuations
around this value will be of O(N~'?), the nonlinear term on
the right-hand side of Eq. (52) can be neglected. One thus
recovers simple diffusive dynamics independently of n (as
long as n> 1) which results in the familiar value X*=1/2 for
the limiting FDR. On the other hand, if the magnetization is
initially nonzero then Eq. (52) predicts that its average value
decays as (m)~¢""") when there is no external field,
whereas for & # 0 it approaches {(m)~ h'"". Comparing with
the standard scalings (m)~t#9 and (m)~h"? respec-
tively, one sees that we require n=35 and 1/(n—1)=8/(vz);
these two choices for n are consistent with each other only if
the mean-field relation z=2— 7 holds. We can then go ahead
and, by linearizing Eq. (52) in the small deviations of m from
its average (m), calculate its correlation and response func-
tion. This simple calculation gives for the limiting FDR X*
=(Bn-1)/(4n-2)=(2B+3vz)/(2B+4vz). Inserting the
mean-field exponents z=2, S=1/2, and v=1/2, which imply
n=3, then leads to X*=4/5.

Summarizing, the phenomenological Langevin equation
(52) predicts two different results for the limiting FDR of
mean-field ferromagnets, depending on the initial condition:

12 ifm=0,
& |45 itm#0.

These are precisely the values that we found in our explicit
calculations for the long-range and high-dimensional short-
range models. One may then wonder whether this phenom-
enological approach can also be used to predict FDR values
below the upper critical dimension. The spherical model in
d<4, for example, has non-mean-field exponents but still
satisfies z=2—#, so that the Langevin description is at least
internally consistent. However, explicit calculations [26]
show that the values of the FDR it predicts are incorrect. The
Langevin dynamics (52) is therefore too simple to capture
the full physics away from mean field. It remains an open
question whether appropriately generalized phenomenologi-
cal descriptions can be used to rationalize FDR values in
non-mean-field systems.
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We have also investigated in this paper the dependence of
the limiting FDR on the observable considered. If the FDR
and any associated effective temperature are physically
meaningful, one would hope that, e.g., local and global ob-
servables would lead to the same limiting FDRs. In the short-
range model we showed that this is indeed the case, because
the behavior of both types of observables becomes domi-
nated by the slowest, longest-wavelength Fourier modes (g
~0) in the limit of long times. The FDR for the Fourier
modes themselves showed the expected crossover between
the values X°° 1/2 and 4/5 for length scales larger than the
time- dependent correlation length (¢<<7.'"%) and Xy =1 for
shorter, equilibrated, length scales.

In the long-range model, we found that great care is
needed when computing local FDRs because the limits N
— and r—t,— % do not commute. If the thermodynamic
limit N — oo is taken before the long-time limit (as we did in
Sec. 1) one gets FDR values that are different from those
obtained for global quantities because the nonequilibrium re-
gime is effectively excluded. To find physically meaningful
results, one has to take the long-time limit before the ther-
modynamic one; this then requires that the system size is
kept large but finite as in Sec. V. With this, the expected
correspondence between local and global FDRs is recovered.
These findings are not only of theoretical interest but also
have two implications for numerical studies. First, if in long-
range models one uses local observables to measure non-
equilibrium FDRs, simulations out to very long time differ-
ences will be required to obtain meaningful results that can
reveal nonequilibrium effects. Second, the fact that for global
observables we could go directly to the infinite-system-size
limit underlines the general message [14,27] that such global
quantities are much more robust tools for detecting FDT vio-
lations than their local counterparts.

Our main finding that magnetized and unmagnetized
coarsening processes at criticality can belong to different dy-
namical universality classes clearly deserves wider study in
future work. Calculations for the spherical model [26] show
that this distinction also holds true below the upper critical
dimension d=4, and provide explicit (and surprisingly non-
trivial) predictions for the resulting FDR values. It would be
interesting to complement this with simulation studies of
Ising models in d=2 and 3. Field-theoretic renormalization-
group calculations [16] might also be possible for the O(n)
and n-vector models. For n=1 these reduce to the Ising uni-
versality class, while for n— 2 one would expect to recover
the spherical model results; knowledge of the detailed depen-
dence of the FDR values on the order parameter dimension-
ality n as one interpolates between these two extreme values
should help to round out the physical picture further. After
the present work was completed we became aware that a first
step in this direction has very recently been taken by the
authors of Ref. [37], who calculated the FDR for the n-vector
model with a magnetized initial state within an € expansion
around d=2.

Finally, there is the possibility that there might be yet
other initial conditions which give rise to distinct and non-
trivial values of the limiting FDR. This does not seem likely,
given that the obvious candidate case of strongly correlated
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but unmagnetized configurations gives X*=0 and can thus be
excluded. Nevertheless, a complete characterization of pos-
sible classes of nonequilibrium coarsening induced by differ-
ent initial conditions certainly remains to be achieved.
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APPENDIX A: DYNAMICAL EQUATIONS FOR THE
LONG-RANGE FERROMAGNET

In this appendix we outline the explicit calculation of the
dynamical equations for the correlations and responses. The
global correlation function is decomposed to leading order in
the system size as

_E Czj_[cloc+O(N_l)]+(N_ 1)( +0(N_ ))

= Cloe+ C+ ON) = Cy+ O(N") (A1)

using Egs. (11)—(13). At equal times, the local correlations
are trivially

Cii(t,1) = Coe(t,1) = 1 — m*(t) (A2)

while for the nonlocal correlations (7) implies to leading
order

l—Cn](t f)= ;Cnl(t, 1) +th'(m)((Ah Aoy + (Ao ARy)

N ot

=— gCnl(t,t) + ]%’th'(m)Cg(t, 7). (A3)

N
In the second line we have used that, for i # j,

Cioclt:1) + OV

(A Ao>_mg<AakA o) = N1
+ N;2<—C“l(t’t) + O(N‘2)> = Glort) +O(N?).
N-1 N N

(Ad)

Defining the quantity a as in Eq. (18) and bearing in mind
that Cy(t,1)=1-m?(t)+ Cyy(t,1), we can then write the evolu-
tion equation (A3) for the nonlocal equal-time correlations as

Co(t,t) ==2aC(t,1) + 2th' (m)(1 — m?).

For the two-time correlations we get similarly from Eq. (8)
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2 Cyt1,) == Cylt.ty) + 0 () AR (DAT(1,)) + ON)
ot
(A3)

which gives for the leading order of the nonlocal terms the
dynamical evolution

J
a_tC“l(t’tW) == Cy(t,1,) + th’ (m)Cy(t,1,,). (A6)

For local correlations, on the other hand, the second term in
Eq. (A5) is subleading so that to leading order

J

E‘Cloc(t,tw) == Cloc(t,tw)- (A7)
Finally we want the dynamical equations for the linear

response functions R,-j(t,tw)=5(ai(t)>/5h§X‘(tW). We assume

that the field is applied to site j=1 and, as for the correlation

functions, use the appropriate scalings (19) and (20). Setting

h{'=h and using Eq. (3) we can write

o) =(thlm + Ay kXY = (o). (AY)

Here m refers to the value of the magnetization for the un-
perturbed system, while

1
hyy=—"=—=2, Ry(t.t,,
5< z> N—lg kl( )

(A9)
is the response function for the average value of the local
field at site i. If we expand again in powers of A#h;, the first
nontrivial term is proportional to ((Ah,)?) and does not con-
tribute to leading order. Writing {(o;)=m+hR;(1,1,,), Eq.
(A8) thus becomes

ol J
7”; # 1 Ri(11,) = thim + h(h)) = m = hR; (1.1,).

Expanding to linear order in & then gives back at O(h°) the
expected dynamical equation (10) for m, while at O(%) one
gets

%Ril(t’tw) = th’(m) 5<hl> - Ril(t7tw) .

In the nonlocal case (i#1), where &h;)=(Ry,c+Ry)/N
+O(N7?) from Egs. (A9), (19), and (20), this gives to leading
order
a !
;tRnl(tv tw) =th (m)[RIOC(tv tw) + Rnl(tv tw)] - Rnl([v tw) .
(A10)

For the local case i=1, on the other hand, the term propor-
tional to &h;) is subleading and one gets simply
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0
_Rloc(t’tw) == Rloc(t’ tw)- (Al 1)

ot
These equations can be integrated forward in time once the
instantaneous response is known. The latter is purely local,
as one sees from

Ry1.0)= — (i +m+ A - )|
j hext=Q
= §,(th"(m + Ahy)). (A12)
Thus, to leading order
Rio(t,1) =th'(m), Ry (t,1)=0. (A13)

APPENDIX B: 1/N CORRECTIONS FOR THE LONG-
RANGE FERROMAGNET

To calculate the 1/N corrections to the local correlation
and response we expand C;;=Coe o+ Croe.1/N+O(N72) =Ciye
+O(N_2) and Rii:RIOC,O+RIOC,1/N+ O(N_2):§IOC+ O(N_Z),
the magnetization, which enters C, ;, is similarly expanded
as m=mgy+m,/N+O(N~2). The quantities Cloc.05 Rioc.0 and my
are then the leading order values calculated in Sec. II. Spe-
cifically, the global correlation and response are to leading
order Cy=Cioc 0t Cp and Ry=Ryoc o+ Ry as before; we will
not try to calculate 1/N corrections to these global quantities
because these would require the subleading corrections to the
non-local terms and thus an accurate treatment of quantities
of O(N7?).

In Eq. (9) we now need to keep the quadratic term in Ah;.
This gives for the magnetization

m (AR
2

S =—m +(t;) =—m+th(m) + th"(m) + O(N7?).
From the definition of 7;, <(Ah,~)2>=<Ahi0'j> for j#1i, a quan-
tity that we worked out in Eq. (A4). Expanding all quantities
in the previous equation to order O(N~!) then gives for the
magnetization correction

o"ml 1 ”
7 =—am; + ECg(t,t)th (my).
This can be integrated but we will not give the explicit result
here since it is not needed below.
For the correlations, by expanding Eq. (16) to O(1/N) we
arrive at
Cioc,1(t,1) = = 2my()m, (7). (B1)

For t#1t, we can use Eq. (A5) with i=j. Bearing in mind
that (h,(1)Ao(ty,))=Cy(t,t,)/N+O(N7?), the O(N~') terms
give

J
%Cloc,l (t’ tw) == C]oc,l (t’ tw) + th,(mO)Cnl(t’tW)

which integrates to
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Cloc,l(t’tw) = e_(l_tW>Cloc,1(tw’tw)

1
+f dt'e "t (my (1)) Cy(t',1,,). (B2)
1,

w

For the response, keeping the (A%;)? term in the expansion
of (A12) gives

R%Lﬂ:%@ﬁ@ﬂ+%§£meﬂ+0mﬂ)

and the O(N™") terms show that the correction to the local
instantaneous response is

1
R, 1(2,1) = myth” (mg) + ECg(tJ)th/”(mo)~ (B3)

For the two-time response, Eq. (A8) with the (Ah,)? term
retained becomes

D 0 Rate1,) = thon + ) + (A

X th"(m + h&(h,))
—m—hR;(t,t,) + ON™2). (B4)

To make progress we assume that the change of the variance
((Ah;)?) caused by the field & is O(h/N?) rather than O(h/N)
and can therefore be neglected. This can be made plausible
by looking at the instantaneous response: the variance
((Ao)?) is changed by an amount of O(%), while changes in
all other covariances (Ac;Ac;) vanish. Thus ((Ah,)?y is in-
deed perturbed by a negligible amount O(h/N?), and one
expects the response at later times to get no larger. We can
therefore replace ((Ah;)%) by C,(t,1)/N as before and regard

it as h independent to the order in 1/N we are retaining. The
O(h) terms in Eq. (B4) then yield

2 )=+ S0 0 ) - 1.2

+O(N7?).

For the local case of interest here, i=1, one has &h;)
=R,/N+O(N~?) from Eq. (A9). Therefore

J 10
ERIOC,O(I’IW) + ]TIERIOC,I(LIW)

1
=th’ (mO) NRnl(t’ tw) - Rloc,O(t’tw)
1 -2
- X,Rloc,l(t,tw) +O(N™). (BS)

The O(N~!) terms give the desired equation of motion for the
response correction

J
E‘RIOC,I([’[W) == Rloc,l (t’ tw) + th,(mO)Rnl(th)

which integrates to
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Rloc,l(tstw) = e_(t_tW)Rloc,l (tw’[w)

t
+f dt' e th! (my(t)R,y (1, 1,). (B6)
1

w

In evaluating the above general predictions we start with
the unmagnetized case, where my(f)=m,()=0 at all times.
From Eq. (B1) the local equal-time correlation receives no
correction, ie., Cjy (7,1)=0, while for the response
Rige1(t,1)==B3Cy(t,1) from Eq. (B3). For T>T,, we have
seen that C,(t,t) approaches its equilibrium value 1/a
=1/(1-pB) exponentially. With r(rf)=exp(—at) and Eq. (28)
the global two-time correlation is then Cg(t,tw)=a‘1 exp(
—a7), while its local analog is given by Eq. (36) as
Cioco(,ty)=exp(—7). Thus the correction Cy,(t,1,) to the
local correlation is for long times

t
IBI dtre—(t—z’)(a—le—a(t’—tw) _ e—(t’—tw))
t

=(1-p) e P (1-p) +B7]. (BT

Combining this with the leading order term gives the result
(48) discussed in the main text. To work out the correspond-
ing correction to the response one notes from Eq. (B3) that
the equal-time value R, ;(¢,1)=—BCy(t,1) converges expo-
nentially to —3*/a. Also, the global response is R,(r,t,)
=Bexp(-a7) from Eq. (29) and the local one R,(t,t,)
=B exp(—7) according to Eq. (37). By inserting these results
into Eq. (B6) one finds

ﬁ3
-8
and it is easy to check that this is related by FDT to the
correlation correction (B7) as it should be.

Next consider the out-of-equilibrium dynamics at critical-
ity (T=1) starting from zero magnetization. For the correla-
tion correction we use that Cy(r,t,)=Cy(t,1,) [a conse-
quence of Eq. (28) together with r(r)=1], while Cy,(,1,)
=exp(—7) as before. Then Eq. (B2) results in

Rloc,l (t’tw) = :Be_(l_B)T_ e_T< + B + BZT)

t
ClOC,l(t’tw) = J dt,e_(r_l )[Cg(tw,tw) - e_(l _tw)]
tW

= Cylty,ty,)(1 =€) —7e7"

and adding the leading order term gives (49). The calculation
for the response correction proceeds similarly, with
R,(t,t,)=1 from Eq. (29) and Ry, (t,t,,)=exp(-7), and leads
to

Rloc,l(t’tw) = - e_TCg([W,[W) + 1 — e—T_ Te—f

and hence Eq. (50).

The final case of interest is the dynamics at criticality but
with m(0) #0. To obtain the leading contribution at long
times to the correction Cy,. (t,1,), consider the integral term
in Eq. (B2). The nonlocal correlations are C(t,f,)=(t,/2)
X (t,/1)3*~exp(=7). The second term makes a contribution
which is at most O(1), and exponentially suppressed for 7
> 1. The first term, on the other hand, contributes

056114-12
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t
J dr' e O, (1 1) = Cylt,t,) (B8)
tW
where we have used that for #,,> 1 the factor C,(t' ,1,,) in the
integrand varies negligibly in the region t—¢'=0(1) that con-
tributes significantly, and the exponential integrates to unity
for 7> 1. Taking into account that the first term in Eq. (B2) is

PHYSICAL REVIEW E 72, 056114 (2005)

also exponentially suppressed, Eq. (B8) gives the leading
contribution to Cyo(f,t,) for 7>1 and r,> 1. For the re-
sponse, very similar arguments show that the leading contri-
bution to the integral term in Eq. (B6) is simply R,(z,1,,); for
time differences 7>1 the remainder of the integral and the
first term in Eq. (B6) can be disregarded. This leads to the
results (50) and (51) given in the main text.
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